Evolutionary Algorithm Based Approach of Envelope Optimization for Large-scale Space
نویسندگان
چکیده
Building envelope optimization always occupies an important place in sustainable building design. This paper selects a large-scale space as research object, which requires more complex and flexible fenestration system. On the premise of complying with some rules, the fenestration is easily managed by adjusting the number and position of small rectangular patches on the grid-based exposed surfaces. The co-simulation of EnergyPlus and Daysim and the evolutionary algorithm named SPEA2 are combined on the Grasshopper platform, aiming to find the optimal trade-offs between minimizing total energy consumption and envelope capital cost and maximizing UDI100-2000. A three-dimensional Pareto front is obtained, and its quality including convergence, spread and uniformity are qualitatively and quantitatively evaluated. This platform is proved to be an effective tool at the initial stage of design for sustainable building.
منابع مشابه
Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملEFFICIENT SIMULATION FOR OPTIMIZATION OF TOPOLOGY, SHAPE AND SIZE OF MODULAR TRUSS STRUCTURES
The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challe...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملTrim and Maneuverability Analysis Using a New Constrained PSO Approach of a UAV
Performance characteristic of an Unmanned Air Vehicle (UAV) is investigated using a newly developed heuristic approach. Almost all flight phases of any air vehicle can be categorized into trim and maneuvering flights. In this paper, a new envelope called trim-ability envelope, is introduced and sketched within the conventional flight envelope for a small UAV. Optimal maneuverability of the inte...
متن کاملGENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS
This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...
متن کامل